Convergence de ${\cal A}^k$

Proposition — *Soit* $A \in \mathcal{M}_n(\mathbb{C})$.

La suite $(A^k x)_{k \in \mathbb{N}}$ converge (géométriquement de rapport $\rho(A)$) pour tout $x \in \mathbb{C}^n$ si et seulement si $\rho(A) < 1$.

DÉMONSTRATION (PROPOSITION)

 \implies Soit $\lambda \in \mathbb{C}$ une valeur propre de A.

Il existe un vecteur propre $x \in \mathbb{C}^n - \{0\}$ associé à λ .

Comme

$$\forall k \in \mathbb{N}, \ \|A^k x\| = |\lambda|^k \cdot \|x\| \xrightarrow[+\infty]{} 0,$$

on a

$$|\lambda| < 1$$
.

D'où

$$\rho(A) < 1.$$

 \longleftarrow Par décomposition de Dunford, il existe $P\in \mathrm{GL}_n\left(\mathbb{C}\right),\,D$ diagonale et N nilpotente telles que

$$A = P(D+N)P^{-1}$$
 avec $DN = ND$.

Comme N et D commutent, on peut utiliser la formule du binôme de Newton.

Soit $k \geqslant 2n$.

$$\begin{split} \|\|A^k\| &= \|\|P(D+N)^kP^{-1}\|\| \\ &\leqslant \|\|P\|\| \cdot \|\|(D+N)^k\|\| \cdot \|P^{-1}\|\| \\ &\leqslant \|P\|\| \cdot \|\|\sum_{i=1}^k \binom{k}{i}D^{k-i}N^i\| \cdot \|P^{-1}\|\| \\ &\leqslant \|P\|\| \cdot \|P^{-1}\|\| \cdot \|D^{k-n}\sum_{i=1}^{n-1} \binom{k}{i}D^{n-i}N^i\| \\ &\text{car } N \text{ est nilpotente} \\ &\leqslant \|P\|\| \cdot \|P^{-1}\|\| \cdot \left(\sum_{i=1}^{n-1} \binom{k}{i}\|D\|^{n-i}\|N\|^i\right) \cdot \|D\|^{k-n} \\ &\leqslant \|P\|\| \cdot \|P^{-1}\|\| \cdot \left(\sum_{i=1}^{n-1} \binom{k}{n}\|D\|^{n-i}\|N\|^i\right) \cdot \|D\|^{k-n} \\ &\text{car le maximum de } \binom{k}{i} \text{ est atteint en } \left\lfloor \frac{k}{2} \right\rfloor \geqslant n > i \\ &\leqslant \|P\|\| \cdot \|P^{-1}\|\| \cdot \left(\sum_{i=1}^{n-1} \frac{k^{n-1}}{n!}\|D\|^{n-i}\|N\|^i\right) \cdot \|D\|^{k-n} \\ &\leqslant C \cdot k^n \cdot \|D\|^k \end{split}$$

Si on choisit pour norme matricielle la norme opérateur associée à la norme vectorielle $\|\cdot\|_\infty$ alors

pour une certaine constante C > 0.

$$|||D|||_{\infty} = \rho(D) = \rho(A) < 1.$$

En effet, d'après la démonstration de la décomposition de Dunford, A et D ont les mêmes valeurs propres.

D'où

$$\forall k \geqslant 2n, \ \|A^k\|_{\infty} \leqslant C \cdot k^n \cdot \rho(A)^k$$

Donc

$$\forall \varepsilon > 0, \ \exists C > 0, \ \forall k \in \mathbb{N}, \ \|A^k\|_{\infty} \leqslant C \cdot (\rho(A) + \varepsilon)^k.$$

D'après **El Amrani** Suites et séries vectorielles, suites et séries de fonctions pp 40-41, cela signifie que la convergence est géométrique de rapport $\rho(A)$.

Proposition — Soit $A \in \mathcal{M}_n(\mathbb{C})$. Soit $b \in \mathbb{C}^n$.

Toute suite de la forme $\forall k \in \mathbb{N}, \ x_{k+1} = Ax_k + b \ avec \ x_0 \in \mathbb{C}^n$ converge si et seulement si $\rho(A) < 1$.

DÉMONSTRATION

On peut facilement montrer par récurrence que

$$\forall k \in \mathbb{N}, \ x_k = A^k x_0 + \left(\sum_{j=0}^{k-1} A^j\right) b.$$

$$\implies$$
 Dans le cas $x_0=0$, ça donne $\forall k\in\mathbb{N},\ x_k=\left(\sum_{j=0}^{k-1}A^j\right)b.$

La convergence de la suite $(x_k)_{k\in\mathbb{N}}$ est alors équivalente avec la convergence de la série.

Comme la série ne diverge pas grossièrement, on a $\lim_{j\to +\infty}A^j=0$.

D'après la proposition précédente, ça implique $\rho(A) < 1$.

$$\Leftarrow$$
 Il existe $\varepsilon > 0$ tel que $\rho(A) + \varepsilon < 1$.

D'après la proposition précédente, il existe C > 0 tel que

$$\forall j \in \mathbb{N}, \ \|A^j\| \leqslant C \cdot (\rho(A) + \varepsilon)^j.$$

Comme $\mathcal{M}_n\left(\mathbb{C}\right)$ est complet, par convergence absolue de la série, la série converge.

De plus, la suite $(A^k x_0)_{k \in \mathbb{N}}$ converge pour tout $x_0 \in \mathbb{C}^n$.

Donc $(x_k)_{k\in\mathbb{N}}$ converge pour tout $x_0\in\mathbb{C}^n$.